

Evaluation of different plating media for growth of *Helicobacter Pylori* isolated from duodenal ulcer patients.

WANI IMTIYAZ¹ & NEOGI PROBHAI²

¹Adesh Institute of Allied and Healthcare Sciences, Adesh University, Bathinda (PB) -INDIA

²Department of Gastroenterology, Motilal Nehru Medical College, Prayagraj (UP)- INDIA

ABSTRACT

Objective: *Helicobacter pylori* infection is the most common cause of duodenal ulcers, which are sores in the lining of the first part of the small intestine. The bacterium damages the protective lining, allowing stomach acid to cause an ulcer. *H. pylori* is regarded as a highly fastidious organism, typically requiring 3-4 days of growth on complex media containing blood or serum in a low-oxygen atmosphere. The growth of the *H. pylori* has been achieved only by inoculating the clinical specimen and storage in blood agar only. The objective of this research was to compare the growth of *H. pylori* in different blood agar medium to elucidate whether the medium provided considerable growth of *H. pylori* *in vitro*.

Methods: *H. pylori* was inoculated in human, goat, sheep and chicken blood agar plates and incubated in anaerobic under microaerophilic (5% O₂, 10% CO₂ and 85% N₂) conditions at 37°C for 4 days. After successful incubation, significant differences in growth were observed and further confirmed based on colony morphology, Gram staining and biochemical tests.

Results: In human blood agar plates, it was observed that creditable colony size and growth of *H. pylori*. In goat blood also showed more or less equal results same like human blood; whereas minimal growth was observed in chicken, and no growth was observed in sheep blood agar plates. Even though the *H. pylori* colonies were observed on chicken blood agar plates, the urease test of the colonies are very slow reactive than human and goat blood agar.

Conclusion: The study is suggesting the usage of goat blood as the alternative for the human blood agar for isolation and subculturing of *H. pylori* from clinical samples.

Keywords: Duodenal ulcer, Complex media, Blood agar, Skirrow supplement, *H. pylori*.

INTRODUCTION

H. pylori strains are variable in their growth response to different culture conditions, but no systematic studies on the different atmospheres and growth systems have been published. *H. pylori* can grow on different solid media containing blood or blood products (blood or lysed blood agar plates). For the successful cultivation and maintenance of microbial pathogens in the laboratory, the need of pre-tested culture media is essential. The major factors that are necessary for the isolation of clinical pathogens are providing all essential nutrients, ions and moisture, enrich with supplements, maintenance of pH and osmotic pressure, and able to neutralize the toxic materials produced [1]. From the inception of the Clinical Microbiology laboratory settings, the usage of blood agar supports the growth of fastidious clinical isolates significantly.

Helicobacter pylori are the gram-negative spiral-shaped bacterium which is isolated from gastric ulcers in 1982 [2] that has subsequently been classified into a new genus, *H. pylori* [3]. The major cause of chronic gastritis and peptic ulcer disease are by *H. pylori* and is an important risk factor for the development of gastric malignancies [4,5]. Although various methods have been developed for detecting *H. pylori* infection, the usage of bacterial culture remains extremely important to isolate *H. pylori* and susceptibility testing [6]. For the cultivation and other microbiological studies of *H. pylori*, the usage of blood agar is mandatory added with a battery of prophylactic supplement (antibiotics) to prevent contamination. The concentration of 5% blood is not only useful as a growth inducer also considered for the diagnosis by its hemolytic nature.

In most laboratories, defibrinated sheep blood is the best supplement for bacteriological culture due to its inhibitory nature of the growth of non-pathogenic commensals. The information of usage of other blood sources apart from human and sheep blood are scanty [7]. Also, some study suggested that human blood may certain antibiotics and antimicrobial agents which may also inhibit growth and cause false hemolysis. Thus, need for alternative blood sources for the development of novel blood agar to avoid the above said laboratory issues. Some studies suggested the usage of expired human blood from blood banks is often the most accessible source, but there is no exploration of wide usage of other blood sources and its effect on microbial growth and other biochemical and morphological characteristics [8].

In order to avoid the occupation risk to bloodborne pathogens become more real and cannot ignore; it has become mandatory to identify other blood types to find out suitability, availability, feasibility and easy handling to prepare blood agar plates [7,8]. Various factors, including transport conditions, bacterial density, culture medium, and microaerophilic condition, directly influence the yield of culture also play a very important role in the *H. pylori* bacteria culturing [9]. This study therefore describes and evaluates other animal blood types for the ability to support *H. pylori* growth compared with human blood. It also helps to identify variations in colony morphology and other growth characteristics including biochemical tests, compare the growth rate of *H. pylori*. Thus, this study tries to determine the limitations of the usage of different blood types for *H. pylori* growth.

MATERIALS AND METHODS

Blood collection

Page | 17

Index in Cosmos

Nov 2025, Volume 15, ISSUE 4

UGC Approved Journal

Human blood was obtained from the blood bank of MNMC Hospital, blood samples of goat, Sheep, and Chicken were obtained from animal house of MNMC. Health related questions were enquired and antibiotics used in the animals in the preceding month. 20 ml blood was collected by cardiac puncture in chicken, jugular veins of the goat and sheep. Fresh human blood was collected aseptically in EDTA bottles and stored at a low temperature until use.

Preparation of Skirrow supplement

The antibiotic supplement is recommended for the selective isolation of *H. pylori* which is composed of polymyxin B (1.250IU), vancomycin (5 mg) and trimethoprim (2.5mg). In this study, commercially available Skirrow supplement (HIMEDIA FD003) was used; further rehydrated the contents of one vial aseptically with 2 ml of sterile distilled water which is sufficient to 500ml of blood agar medium.

Preparation of different blood agar medium

Human, goat, sheep, and chicken blood were aseptically collected from respective sources. For 100ml of blood agar base, 5% of blood and 0.2% of Skirrow supplement were aseptically added and mixed thoroughly. Further, the medium was poured into sterile Petri dishes.

Sources of the *H. pylori* isolates

Duodenal ulcer biopsy samples obtained from the Department of Gastroenterology, MNMC was processed as per the procedure of isolation and identification of *H. pylori* (Guetarni and Bensoltane, 2013). The grinded biopsy materials were inoculated in the blood agar medium enriched with Skirrow supplements and incubated for 3 to 4 days at microaerophilic (5% O₂, 10% CO₂, and 85% N₂) conditions at 37°C. The colonies were identified as small, round, bulgy and glossy (translucent), intense urease, catalase and oxidase production for *H. pylori* [10].

Cultivation in various blood agar plates

The microbiologically confirmed *H. pylori* were inoculated each in the respective blood agar plates and incubated for 3 to 4 days at microaerophilic (5% O₂, 10% CO₂, and 85% N₂) conditions at 37°C. Further, the colonies were observed for *H. pylori* growth and confirmed by rapid biochemical tests including urease, catalase and oxidase [10].

RESULTS

After successful incubation under the microaerophilic condition, the growth of *H. pylori* was observed and recorded. No previous report observed in the determination of *H. pylori* growth in different blood culture medium. The positive results of colony morphology, gram staining and rapid biochemical test including urease, catalase, and oxidase supported the growth of *H. pylori*. The detailed description of the results was depicted in Table 1.

Table 1: Description of *H. pylori* on various blood agar medium.

Blood agar	Growth range	Colony	Gram's staining	Biochemical Tests		
				Urease	Catalase	Oxidase
Human	Significant growth	Small, round, bulgy & glossy (translucent)	Gram-negative (spiral)	rods	Positive	Positive
Goat	Significant growth	Small, round, bulgy & glossy (translucent)	Gram-negative (spiral)	rods	Positive	Positive
Chicken	Sparse growth	Small, round & glossy (translucent)	Gram-negative (spiral)	rods	Slow reactive	Slow reactive
Sheep	Scanty growth	Small, round & glossy (translucent)	Gram-negative (spiral)	rods	Slow reactive	Slow reactive

For comparing the all the plates the growth of *H. pylori* in human blood agar medium showed significant growth followed by goat and chicken blood agar medium plates. Very less (scanty) growth was observed on sheep blood agar medium.

The growth of *H. pylori* in different blood agar medium varies each other; thereby Human and goat blood agar provided the same type of colonies whereas chicken and sheep blood showed and sparse and scanty growth respectively. The bulginess and the translucency vary in different blood agar medium, whereas human and goat blood showed better than chicken and sheep. The rapid biochemical test results of *H. pylori* also varied. Human and goat blood are rapid in reactivity of urease, catalase and oxidase tests but slow reactive was observed in chicken and sheep blood.

DISCUSSION

The results presented in this study confirm that although *H. pylori* colonies are found in all blood agar plates relatively the colony size and other features varied. All the blood agars prepared from animals and human supported the growth of *H. pylori* and there was no significant difference in the morphology and cultural characteristics on the various blood agar types. This was further confirmed by comparing with descriptions from Bergey's Manual [11]. However, substantially smaller colony sizes and slower in rapid biochemical tests were noted among blood agar. Literature suggested that there are no variations in the colony morphology among different blood agar in other infectious bacteria [1].

CONCLUSION:

The culturing of *H. pylori* from gastric antral biopsy specimens is a reference technique in bacteriology and is essential for identifying virulence factors antimicrobial susceptibility testing. Although it is usually considered as a tedious, time-consuming and expensive procedure, culturing on solid medium is the standard method for the isolation of *H. pylori* from gastric biopsy specimens. The gold standard method for the isolation of infectious materials is the successful culturing of microorganism. In recent years, the culturing of *H. pylori* from gastric antral biopsy specimens is a reference technique in bacteriology and is essential for identifying virulence factors antimicrobial susceptibility testing [12]. Although it is usually considered as a tedious, time-consuming and expensive procedure, culturing on solid medium is the standard method for the isolation of *H. pylori* from gastric biopsy specimens [13,14].

These findings have profound implications of using alternative animal blood for the preparation of blood agar, wherein most laboratories expired human blood is commonly supplemented. Thus this study will give some ideas to the laboratory personals and policy makers to alternate the human blood to other animal blood for the cultivation of various pathogenic bacteria including *H. pylori*. To our knowledge, this is the first time that different blood sources have been shown to be suboptimal for the growth of *H. pylori*. The comparative analysis of the growth of other bacteria in different blood agar was established [7,8,15,16,17,18]. Even some study suggested that citrated sheep blood agar is the best alternative for *Streptococcus pneumoniae*, *S. pyogenes*, and *Staphylococcus aureus* [15], but in this study, the sheep blood is not much successful for the culture and maintenance of *H. pylori*.

REFERENCES

1. Egwuatu TO, Ogunsola FT, Okuduga IM, Jide B, Arewa DG and Osinupei OA. Effect of blood agar from different animal blood on growth rates and morphology of common pathogenic bacteria. *Adv Microbiol* 2014; 4: 1237-1241.
2. Warren JR and Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. *Lancet* 1983; 12: 1273-1275.
3. Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD, Sly L, McConnell W and Harper WE. Transfer of *Campylobacter pylori* and *Campylobacter mustelae* to *Helicobacter* gen. nov. as *Helicobacter pylori* comb. nov. & *Helicobacter mustelae* comb. nov., respectively. *Int J Syst Bacteriol* 1989; 39: 397-405.
4. Dunn BE, Cohen H and Blaser MJ. *Helicobacter pylori*. *Clin Microbiol Rev* 1997; 10: 720-741.
5. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N and Sibley RK. *Helicobacter pylori* infection and the risk of gastric carcinoma. *N Engl J Med* 1991; 325: 1127-1131.
6. Hartzen SH, Andersen LP, Bremmelgaard A, Colding H, Arpi M, Kristiansen J, Justesen T, Espersen F, Frimodt MN and Bonnevie O. Antimicrobial susceptibility testing of 230 *Helicobacter pylori* strains: importance of medium, inoculum and incubation time. *Antimicrob Agents Chemother* 1997; 41: 2634-2639.
7. Hoppe JE and Schlangenau M. Comparison of three kinds of blood and two incubation atmospheres for cultivation of *Bordetella pertussis* on charcoal agar. *J Clin Microbiol* 1989; 27: 2115-2117.
8. Anand CR, Gordon A, Shaw H, Fonseca K and Olsen M. Pig and goat blood as substitutes for sheep blood in blood supplemented agar media. *J Clin Microbiol* 2000; 38: 591-594.
9. Siu LK, Leung WK, Cheng FAB, Sung JG, Ling TKW, Ling JML, Ng EKW, Lau JYW and Chung SCS. Evaluation of a selective transport medium for gastric biopsy specimens to be cultured for *Helicobacter pylori*. *J Clin Microbiol* 1998; 36: 3048-3050.
10. Cassel BAM, Peghini M, Mouden JC and Rajaonarison P. Prevalence of infection *Helicobacter pylori* in Tananarive, Madagascar. *Bull Soc Pathol Exot* 1997; 90: 6-9.
11. Miles AA, Irwin JO and Misra SS. The estimation of the bactericidal power of the blood. *J Hyg* 1938; 38: 732-749.
12. Sulami AA, Kiat HAS, Bakker LK and Hunoon H. Primary isolation and detection of *Helicobacter pylori* from dyspeptic patients: a simple, rapid method. *East Mediterr Health J* 2008; 14: 268-277.
13. Maqraud F. A growing demand for *Helicobacter pylori* culture in the near future. *Ital J Gastroenterol Hepatol* 1997; 29: 574-576.
14. Buck GE and Smith JC. Medium supplementation for growth of *Campylobacter pyloridis*. *J Clin Microbiol* 1987; 25: 597-599.
15. Russell FM, Biribo SSN, Selvaraj G, Oppendisano F, WEarren S, Seduadua A, Mulholland EK and Carapetis JR. As a bacterial culture medium, citrated sheep blood agar is a practical alternative to citrated human blood agar in laboratories in developing countries. *J Clin Microbiol* 2006; 44: 3346-3351.
16. Guetarni H and Bensoltane A. Isolation and characterization of *Helicobacter pylori* strains from gastric biopsies of Algerian patients. *Online J Biol Sci* 2013; 13: 41-49.
17. Gratten M, Battistutta D, Torzillo P, Dixon J and Manning K. Comparison of goat and horse blood as culture medium supplements for isolation and identification of *Haemophilus influenzae* and *Streptococcus pneumoniae* for upper respiratory tract secretions. *J Clin Microbiol* 1994; 32: 2871-2872.
18. Krumweide E and Kutter AG. A growth inhibitory substance for the influenza group of organisms in the blood of various animal species. The use of the blood of various animals as a selective medium for the detection of hemolytic streptococci in throat cultures. *J Exp Med* 1938; 67: 429-441.
19. www.humanesociety.org. Farm Animal statistics: slaughter totals.